Jean Piaget (1955)
§ 4. From Sensori-Motor Universe to Representation of the Child’s World
2. . Causality and Time
The development of causality from the first months of life to the eleventh or twelfth year reveals the same graphic curve as that of space or object. The acquisition of causality seems to be completed with the formation of sensorimotor intelligence; in the measure that objectification and spatialisation of relations of cause and effect succeed the magico-phenomenalistic egocentrism of the primitive connections, a whole evolution resumes with the advent of speech and representative thought which seems to reproduce the preceding evolution before really extending it.
But among the displacements to which this history of the concept of cause gives rise, distinction must again be made between the simple temporal displacements in extension due to the repetition of primitive processes on the occasion of new problems analogous to old ones, and the temporal displacements in comprehension due to the transition from one plane of activity to another; that is, from the plane of action to that of representation. It seems useless to us to emphasise the former. Nothing is more natural than the fact that belief in the efficacy of personal activity, a belief encouraged by chance comparisons through immediate or phenomenalistic experience, is again found throughout childhood in those moments of anxiety or of desire which characterise infantile magic. The second type of temporal displacements, however, raises questions which it is useful to mention here.
During the first months of life the child does not dissociate the external world from his own activity. Perceptual images, not yet consolidated into objects or coordinated in a coherent space, seem to him to be governed by his desires and efforts, though these are not attributed to a self which is separate from the universe. Then gradually, as progress is made in the intelligence which elaborates objects and space by spinning a tight web of relations among these images, the child attributes an autonomous causality to things and persons and conceives of the existence of causal relations independent of himself, his own body becoming a source among other sources of effects integrated in this total system. What will happen when, through speech and representative thought, the subject succeeds not only in foreseeing the development of phenomena and in acting upon them but in evoking them apart from any action in order to try to explain them? It is here that the paradox of displacement in comprehension appears.
By virtue of the "why" obsessing the child’s mind, as soon as his representation of the world can be detached without too much risk of error, one perceives that this universe, centred on the self, which seemed abolished because it was eliminated from practical action relating to the immediate environment, reappears on the plane of thought and impresses itself on the little child as the sole understandable conception of totality. Undoubtedly the child no longer behaves, as did the baby, as though he commanded everything and everybody. He knows that adults have their own will, that the rain, wind, clouds, stars, and all things are characterised by movements and effects he undergoes but cannot control. In short, on the practical plane, the objectification and spatialisation of causality remain acquired. But this does not at all prevent the child from representing the universe to himself as a large machine, organised exactly by whom he does not know, but organised with the help of adults and for the sake of the well-being of men and particularly of children. Just as in a house everything is arranged according to a plan, despite imperfections and partial failures, so also the raison d’être for everything in the physical universe is the function of a sort of order in the world, an order both material and moral, of which the child is the center. Adults are there "to take care of us," animals to do us service, the stars to warm us and give us light, plants to nourish us, rain to make the gardens grow, clouds to "make night," mountains to climb on, and lakes for boats, etc. Furthermore, to this more or less explicit and coherent artificialism there corresponds a latent animism which endows everything with the will to play its role and with just the force and awareness needed to act with regularity.
Thus the causal egocentrism, which on the sensorimotor plane disappears gradually under the influence of spatialisation and objectification, reappears from the time of the beginnings of thought in almost as radical a form. Doubtless the child no longer attributes personal causality to others or to things, but while endowing objects with specific activities he centers all these activities on man and above all on himself. It seems clear that in this sense we may speak of temporal displacement from one plane to another and that the phenomenon is thus comparable to the phenomena which characterise the evolution of space and object.
But it is in a still deeper sense that the primitive schemata of causality are again transposed in the child’s first reflective representations. If it is true that from the second year of life the child attributes causality to others and to objects instead of reserving a monopoly on them for his own activity, we have still to discover how he represents to himself the mechanism of these causal relations. We have just recalled that corresponding to the egocentric artificialism which makes the universe gravitate around man and child is an animism capable of explaining the activity of creatures and things in this sort of world. This example is precisely of a kind to help us understand the second kind of temporal displacement of which we now speak: if the child renounces considering his actions as the cause of every event, he nevertheless is unable to represent to himself the action of bodies except by means of schemata drawn from his own activity. An object animated by a "natural" movement like the wind which pushes clouds, or the moon which advances, thus seems endowed with purposefulness and finality, for the child is unable to conceive of an action without a conscious goal. Through lack of awareness, every process involving a relation of energies, such as the rising of the water level in a glass in which a pebble has been dropped, seems due to forces copied from the model of personal activity; the pebble "weighs" on the bottom of the water, it "forces" the water to rise, and if one held the pebble on a string midway of the column of the water the level would not change. In short, even though there is objectivity on the practical plane, causality may remain egocentric from the representative point of view to the extent that the first causal conceptions are drawn from the completely subjective consciousness of the activity of the self. With regard to spatialisation of the causal connection the same temporal displacement between representation and action is observable. Thus the child can acknowledge in practice the necessity for a spatial contact between cause and effect, but that does not make causality geometric or mechanical. For example, the parts of a bicycle all seem necessary to the child long before he thinks of establishing irreversible causal series among them.
However, subsequent to these primitive stages of representation during which one sees reappear on the plane of thought forms of causality relative to those of the first sensorimotor stages and which seem surpassed by the causal structures of the final stages of sensorimotor intelligence, one witnesses a truly reflective objectification and spatialisation, whose progress is parallel to that which we have described on the plane of action. Thus it is that subsequent to the animism and dynamism we have just mentioned, we see a gradual "mechanism" taking form, correlative to the principles of conservation described in § 3 and to the elaboration of a relative space. Causality, like the other categories, therefore evolves on the plane of thought from an initial egocentrism to a combined objectivity and relativity, thus reproducing, in surpassing, its earlier sensorimotor evolution.
With regard to time, concerning which we have tried to describe on the purely practical plane of the first two years of life the transformation from subjective series into objective series, there is no need to emphasise the parallelism of this evolution with that which, on the plane of thought, is characterised by the transition from internal duration, conceived as the sole temporal model, to physical time constituted by quantitative relations between spatial guide-marks and external events. During the first phases of representative thought the child does not succeed in estimating either concrete duration or even rates of speed except ,by referring them to mere psychological time. Subsequently, on the contrary, he constructs in thought, and no longer only in action, objective series connecting internal duration to physical time and to the history of the external universe itself. For instance, if one draws in front of a child two concentric figures one of which describes a big circle and the other a much smaller one, and if one makes two automobiles of the same dimensions cover these two trajectories at the same time, the youngest subjects cannot avoid believing that the automobile following the small circle went "faster" than the other. "Faster" in this case simply means "more easily," "with less effort," etc., but the child does not take into account the relation between time and the space covered. For adults, on the contrary, speed is measured by this relation, and the expression "faster" loses its subjective meaning. So also, the expressions "more time" or "less time" have no objective meaning for little children and acquire it for adults, etc. ***
No comments:
Post a Comment